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I. INTRODUCTION

Scientists in various disciplines are faced with huge amounts
of data that need to be studied and analyzed. NASA alone has
approximately 18 satellites with over 80 sensors, all of which
continuously collect a tremendous amount of data from around
the globe . An important step in modern data processing
applications where data are gathered from multiple sources
is data fusion. Data fusion is defined as the process of dealing
with information from multiple sources to achieve refined and
improved information for decision making [1]. Image fusion
is a subset of the general data fusion problem where data
being fused are images. The goal of performing image fusion
is usually to increase either the spatial or spectral resolution
of images involved.

One particular case of image fusion is pan-sharpening. Pan-
sharpening is a technique which deals with the limitations of
sensors in capturing high resolution multispectal (MS) images
[2]. Panchromatic (Pan) images have high spatial resolution
and low spectral resolution. On the other hand, MS images
have high spectral resolution, since they cover a narrower
wavelength range, but have a lower spatial resolution. Image
fusion is then used as a tool to create a high spatial and spectral
resolution image given Pan and MS images. In this paper we
show how to apply fusion for the purpose of pan-sharpening
multispectral Landsat ETM bands by using cokriging.

We employ the cokriging interpolation method for image
fusion of remotely sensed data [3], [4]. In particular, we
show preliminary results on applying a variant called ordinary
cokriging for pan-sharpening of multispectral images from the
Landsat 7 sensor. We initially proposed cokriging for image
fusion in [5] and showed preliminary results on increasing
the spectral resolution of ALI using Hyperion. In this paper,
we address the problem of increasing the spatial resolution of
multispectral bands of a sensor using a panchromatic image.
We then evaluate both spectral and spatial quality of our fused
images through a few quantitative measures. We also compare
our results to those obtained from more traditional approaches
based on principal component analysis and wavelets.

II. ORDINARY COKRIGING FOR DATA FUSION

Kriging is an interpolation method named after Danie Krige,
a South African mining engineer, who pioneered in the field
of geostatistics [3]. There are variants of this interpolation
method. The most commonly used variant is called ordinary
kriging, which is often referred to as a best linear unbiased

estimator. It is considered to be best because it aims to
minimize variance of the estimation error. It is linear because
estimates are weighted linear combination of known values,
and is unbiased since it constrains the mean error to be equal to
zero [4]. Kriging and its variants have been traditionally used
in mining and geostatistics applications [3], [4], [6]. Kriging
is also referred to as the Gaussian process predictor in the
machine learning domain [7].

We find cokriging suitable for various applications of data
fusion for the following reasons:
• Ordinary cokriging is a best unbiased linear estimator.
• Cokriging can integrate data of various natures.
• Cokriging can interpolate arbitrary scattered data. Unlike

many other image fusion methods, cokriging does not
require resampling of the data sets when registration of
the remotely sensed data is being performed. This avoids
introduction of errors due to rotation, translation, and
interpolation of the data during the resampling process.

• Cokriging is applicable to the vision of future sensor
networks, where many small sensors are located at scat-
tered locations. Using cokriging one can estimate sensor
measurements for a particular property at locations where
those values are missing.

In this paper, we explore using cokriging for pan-sharpening
or improving the spatial resolution of multi-spectral imagery.

III. DATA SETS

We used Landsat 7 ETM data sets provided by the IEEE
Data Fusion Committee, data set grss dfc 0002 [8]. The im-
ages were taken over Hasselt (Belgium) in 1999. Landsat
7 ETM imagery has 8 bands. Landsat data specifications
are presented in Table I. Note that the spectral resolution
of the panchromatic band 8 corresponds to MS bands 2,
3, and 4 combined. Thus, for our experiments, we used a
200 × 200 subset of multispectral bands 2, 3, and 4 and
their corresponding 400 × 400 panchromatic band 8 which
are shown in Figures 1 and 2 respectively.

IV. METHODS

We performed pan-sharpening of Landsat MS bands 2, 3,
and 4 by fusing them with Pan band 8 using three differ-
ent fusion methods: cokriging, principal component analysis
(PCA), and wavelet-based fusion. In this section, we describe
each method briefly.



Fig. 1. Landsat 7 Multispectral Bands 2, 3, and 4. Landsat 7 image courtesy
ESA 1999 - distribution Eurimage.

TABLE I
LANDSAT 7 ETM DATA SPECIFICATION

Band Resolution
Spatial Spectral

(meters) (µm)
1 30 0.45–0.52
2 30 0.53–0.61
3 30 0.63–0.69
4 30 0.78–0.90
5 30 1.55–1.75
6 30 10.4–12.5
7 30 2.09–2.35
8 15 0.52–0.90

A. Cokriging

By linearity, the interpolated estimate H produced by cok-
riging at some location 0 is a linear combination of variables
of interest. In our case we have two types of variables: high
spatial resolution data and high spectral resolution data. We
represent these two types of variables by h and l respectively,
and we represent random functions generating these variables
by H and L.

The estimate of H at location 0, ĥ0, using the two sets of
variables as mentioned in [4], is given by ĥ0 =

∑n
i=1 aihi +∑m

j=1 bj lj , where h1, h2, . . . , hn are primary data (high spatial
resolution data in our application) at n nearby locations,
l1, l2, . . . , lm are secondary data (high spectral resolution data
for our case) at m nearby locations, and a1, a2, . . . , an and
b1, b2, . . . , bm are cokriging weights which will be calculated.
The estimation error, R, is calculated as R = ĥ0 − h0 =
wtZ, where wt = (a1, . . . , an, b1, . . . , bm,−1), and Zt =
(h1, . . . , hn, l1, . . . , lm, h0). The goal of cokriging is to find
the weight vector wt such that the variance of the error is
minimized and the estimate for ĥ0 be unbiased, that is, the
mean error residual is zero.

There are various types of the cokriging methods. Here we
illustrate the ordinary cokriging. Ordinary cokriging requires
that

∑n
i=1 ai = 1 and

∑m
j=1 bj = 0. These two constraints

make our estimate unbiased (see [4] for details). So now we
have an optimization problem with two constraints. Let Cz
represent pairwise covariances of variables in vector Z. Then,
using Lagrange multipliers µ1 and µ2, the objective function
of our optimization problem is as follows.

Var(R) = wtCZw + 2µ1(

nX
i=1

ai − 1) + 2µ2(

mX
j=1

bj).

Fig. 2. Landsat Panchromatic Band 8. Landsat 7 image courtesy ESA 1999
- distribution Eurimage.

Once the above system of equations is solved, we have the
desired coefficients a1, a2, . . . , an, b1, b2, . . . , bm to estimate
function H at location 0.

In order to set up the linear system, one needs to model
pairwise covariances among available measurements. A re-
quirement on these models is that they should generate a
positive definite covariance matrix. A few covariance models
are known to have this property (see [3], [4] for more details).
We selected a few of these models with a limited number of
parameters, and in each case we chose the one which best
fit our data, which was spherical model with range 10. We
performed our modelling and cokriging interpolation through
a freely available software for interpolation of agro-climatic
data [9]. For each query point, we considered its 32 nearest
neighbors although different neighborhood sizes may result in
better results. Cokriging interpolation and evaluation steps are
computationally expensive tasks. For this reason, and because
far points are expected to have less effect on interpolation
weights, cokriging systems are traditionally solved over a
local neighborhood from the query point [3], [4]. Efficient
implementations of these tasks will be the focus of our future
research. Pan-sharpened MS bands 2, 3, and 4 (fused bands)
by cokriging are shown in Figure 3.

B. Principal Component Analysis (PCA)

We applied PCA for image fusion similarly to [10], [11].
First, we performed principal component transformation on
Landsat multispectral bands. Then, the first principal compo-
nent (PC) was replaced with the high resolution Pan band,
which was scaled so that its mean and standard deviation
match those of the first principal component of the MS bands.
This scaling was performed to avoid distortion of the spectral
information. Then, the first component was replaced by the



stretched band. We then proceeded by performing inverse PCA
on the stretched pan band and other PCs.

C. Wavelet-Based Fusion

A wavelet decomposition of any given signal (1-D or 2-
D) is the process that provides a complete representation of
the signal according to a well-chosen division of the time-
frequency (1-D) or space-frequency (2-D) plane [12]. Through
iterative filtering by low-pass and high-pass filters, it provides
information about low- and high-frequencies of the signal at
successive spatial scales. For fusion purposes, multi-resolution
wavelet decomposition separates high- and low-frequency
components of the two given data sets and these components
are then recomposed differently in the reconstruction phase.

In our experiments, we are using a Daubechies filter [12]
of size 4 and a Mallat Multi-Resolution Analysis (MRA) [13]
decomposition and reconstruction scheme. Then, components
from both decompositions are combined during the recon-
struction phase to create the new fused data. In this scheme
and similarly to [14], where different spatial resolution data
are fused, we fuse the different spectral resolution data in
the following manner: high-frequency information of the high
spatial resolution data (e.g., Pan Landsat band 8) is combined
with low-frequency information of the high spectral resolution
data (e.g., Landsat MS bands). In our experiments, the same
Daubechies filter of size 4 is used for both decomposition and
reconstruction phases and for both types of data.

Fig. 3. Landsat Pan-sharpened MS bands 2, 3, and 4 through cokriging with
Pan band 8

V. EVALUATION

We increased the spatial resolution of Landsat ETM multi-
spectral bands 2,3, and 4 by fusing them with its panchromatic
band 8. We performed fusion based on cokriging, PCA, and
wavelets as described in the previous section. Next, we eval-
uated the quality of our results. Ideally, this evaluation would

involve a comparison of the classification accuracy on ground-
truth data. One could perform classification on input bands
and fused bands respectively, assess the classification accuracy
through ground truth in each case, and see which fused
bands resulted in the most improvement of the classification
accuracy. For the area corresponding to the images used in
this paper, ground truth is available for SPOT imagery before
being registered to the Landsat image. We hope to have the
ground truth provided for the SPOT data after it is registered
to the Landsat image, and evaluate and report the classification
accuracy of the fused images at the conference. For now,
we evaluate our fusion methods through a few quantitative
methods.

We evaluate both the spectral and spatial quality of our fused
bands. The spectral quality was evaluated by calculating how
highly each fused band is correlated with its corresponding
input MS band. We expect the spectral quality of MS bands
to be preserved in the fused bands. Thus, the higher the
correlation of the fused bands with their corresponding MS
bands is, the better the spectral quality of the fusion.

In order to evaluate the spatial quality of the fused bands
we calculate the entropy of the multispectral input bands and
their corresponding fused bands. The idea is that the fused
images should have enhanced information content compared
to their corresponding input MS bands. Thus, the higher the
entropy of the fused band is compared to its corresponding
MS input band, the better the spatial quality of the fusion is.

In [5] we proposed using Haralick’s texture quality metrics
[15] as a fusion quality metric. The motivation for doing so
is that an image with high textural information is more likely
to result in better classification accuracy. Haralick [15] first
proposed using a co-occurrence matrix to calculate various
statistical texture properties for an image. A co-occurrence
matrix calculates the number of occurrences of all pairs of
gray level which are separated by a distance d along a
given direction. From the co-occurrence matrix, several texture
measurements can be computed among which are contrast,
variance, and entropy. Usually co-occurrence matrices are
calculated locally by considering a small window around each
pixel. For each window, co-occurrence matrices are calculated
along four directions. Then, a statistical measure (e.g. contrast,
variance, entropy) is calculated for that local window. Then,
the middle pixel of that window is replaced by the mean of
the calculated statistical measure over all four directions. This
is repeated for every pixel so that at the end of the process
we have an image where each of its pixels is representing a
statistical measure of its local neighborhood. We calculated
entropy images and then calculated the mean value of each
of these images. Increase in mean of entropy images indicates
increase in textural information contained in the image, which
most likely causes better classification accuracy. However,
the true evaluation criteria for our fusion methods would be
through ground truth and comparing the classification results
of original and fused bands against them.



VI. RESULTS

First we discuss the spectral quality of fused images using
different methods. Pairwise correlation of fused bands and
their corresponding input MS bands are shown in Table II.
While PCA gives the best spectral quality results for bands
2 and 3, wavelet-based fusion performs best for band 4.
However, we see that cokriging performs consistently for all
bands and correlations of fused bands with all input MS bands
exceeded 90% in all cases. As for spatial quality measures

TABLE II
CORRELATION OF FUSED BANDS WITH MS INPUT BANDS

Bands Wavelet PCA Cokriging
f2, b2 0.82 0.99 0.91
f3, b3 0.84 0.99 0.93
f4, b4 0.92 0.75 0.93

Average 0.86 0.91 0.92

we considered both the overall entropy of images as well
as the mean of entropy images calculated through local co-
occurrence matrices [15]. Entropy of input MS bands and
fused images are reported in Table III, and the mean entropy
of entropy images calculated through local co-occurrence
matrices are presented in Table IV. In both cases, cokriging
results in increased spatial information compared to their cor-
responding MS bands. In all cases, cokriging performed better
than wavelet-based fusion in increasing the spatial content of
MS bands. PCA performed better in spatial domain for bands
3 and 4. However, cokriging performed more consistently
overall in increasing spatial information of all MS bands.
As we see in Table III, cokriging resulted in higher average
entropy of the fused bands compared to PCA and wavelet
based fusion. Similarly, results in Table IV indicate that PCA
does not increase the textural information significantly for
band 2. Cokriging performs more consistently in increasing
the textural information across all bands. However, the overall
textural information gained are comparable to that obtained
from PCA.

TABLE III
ENTROPY OF MS AND FUSED BANDS

Original Fused Wavelet PCA Cokriging
Bands Bands

b2 2.68 f2 3.12 2.69 3.23
b3 3.01 f3 3.28 3.72 3.64
b4 3.44 f4 3.93 5.21 4.90

Average 3.04 3.44 3.87 3.92

VII. CONCLUSION

Our experiments indicate that cokriging can be used as
a fusion method for pan-sharpening of multispectral data.
Methods like PCA or wavelet-based fusion are sensitive to
particular wavelengths for preserving spectral resolution of MS
bands or increasing their spatial information. Cokriging, on the
other hand, performed consistently by producing fused bands
that are more than 90% correlated with their corresponding

TABLE IV
MEAN ENTROPY OF ENTROPY IMAGES OBTAINED THROUGH

CO-OCCURRENCE MATRICES

Original Fused Wavelet PCA Cokriging
Bands Bands

b2 1.37 f2 1.37 1.37 1.44
b3 1.42 f3 1.45 1.49 1.45
b4 1.77 f4 1.78 2.02 1.96

Average 1.52 1.53 1.63 1.62

MS input bands and that have significantly increased spatial
information compared to their input MS bands. This effort only
provides preliminary results on the applicability of cokriging
to image fusion. There are various factors and parameters that
can lead to better-quality fused images. These include having
better models for pairwise covariances of data, and considering
the best possible neighborhood size for interpolation of data.
Evaluation of the results would also be more accurate if ground
truth data were available. These issues along with efficient
implementations of cokriging are the focus of our future work.
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